
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS                    Vol. 15, No. 11 - 12, November – December 2013, p. 1188 - 1199 
    

Generation of new doughnut beams from Li’s flattened 
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Using Collins-Huygens integral formula, a method for generation of Superposition of Kummer (SK) beams as new kind of 
doughnut beams is demonstrated. The method is based on the conversion of phase of the non-doughnut Li’s flattened 
Gaussian (LFTG) beams, which are the incident beams, by a Spiral Phase Plate (SPP) system. It is shown that doughnut 
beams can be produced from non-doughnut beams. Mathematical approaches of propagation properties of generated laser 
light are established for integer and fractional topological charges of SPP. The above results concerning the formation of 
Kummer beams by an SPP, also about propagation of LFTG and fundamental Gaussian beams through an ABCD optical 
system without SPP and other results are deduced from ours as particular cases when the topological charges are integer. 
Some numerical simulations of propagation of novel beams in free space (in the cases of an integer (χ=l=1) and a fractional 
topological charge (χ≠1)) and through a fractional Fourier transform (FRFT) system (for l=1) are also performed in this work. 
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1. Introduction 
 
In the end of the last century, various closed paraxial 

solutions of the Helmholtz equation have been the subject 
of several works. For the sake of their use in realization of 
nondiffracting beams, a particularly interesting is given to 
the so-called flattened Gaussian beams. Several formalisms 
of this family have been introduced in the literature. 
Among these, super Gaussian [1], weighted sums of 
Gaussians having different focusing parameters [2-5], 
super Lorentzian [2], wavelets [6], the flattened Gaussian 
introduced by Gori [7] and utilized by Santarsiero and 
Borghi [8] and Bagini et al. [9]. In 2002, the flat-toped 
light beams established for the first time by Li in Ref. [5], 
and synthesized by coherent superposition of fundamental 
mode Gaussian beams. Their amplitude distribution across 
the waist plane is similar to that of a Gaussian beam whose 
central region has been flattened. Recently, Kinani et al. 
[10] have investigated the propagation properties of these 
beams in turbulent atmosphere. 

On other hand, generating of doughnut beams has 
been paid considerable attentions in the past few years. 
This due to its significant role for studying orbital 
momentum of light fields [11,12], its use in optical 
trapping of atoms [13,14], its application in optical 
tweezers [15] and optical meteorology [16]. Several 
methods have been realized for generating the doughnut 
beams, such as “fork” computer generated holograms [17], 
cylindrical lens mode converters [18], phase mask [19], 
spatial light modulators [20] and Spiral Phase Plate (SPP) 
[21, 22]. 

The SPP is widely known as a useful tool producing 
the doughnut laser beams [23, 24], and can permits direct 

conversion of incident laser beam without changing its 
propagation direction. In a recent work, Mawardi et al. 
[25] have described the propagation of doughnut 
(Kummer) beams produced by passage of Gaussian beams 
through an SPP. 

The present paper aims to study the propagation of 
new SK beams generated by an SPP, illuminated by LFTG 
beams, and followed by a paraxial ABCD optical system. 
From our main analytical expression, concerning the 
integer topological charge of the SPP, the above results 
about the formation of Kummer beams by an SPP 
illuminated by Gaussian beams, and regarding the 
travelling of LFTG and Gaussian beams through any 
paraxial ABCD optical system have been deduced. 

The remaining parts of this paper are organized as 
follows: Section 2 is reserved to the definition and plots of 
the intensity distribution of a LFTG beam in 3D as incident 
beam. Section 3 is focused on calculating the analytical 
expression of SK beams as new doughnut beams. Some 
special cases are established in this paragraph. Some 
numerical simulations of propagation of novel beams in 
free space in the case of integer (χ=l=1) and fractional 
topological charges (χ≠1), and through a fractional Fourier 
transform (FRFT) system for l=1 are treated in Section 4. 
A simple conclusion is outlined in Section 5. 

 
 
2. Li’s Flattened Gaussian beams  
 
The electric field of propagation of a LFTG beam 

along the optical axis (z axis) for 0≥z , in cylindrical 
coordinates is given by [5] 
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where the coefficient mα is given by 
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where 0ω  is the beam waist of the Gaussian beam and the 
scaling factor β  is given by 
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where zR is the Rayleigh range for the beam of order m=1 
which is given by 
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In the following, we will be interested only in the integer 
values of the beam characterization parameter M. In this 
case, Eqs. (2) and (3c) become [5] 
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In Fig. 1, we illustrate the intensity of incident LFTG 
beams for six values of the parameter M and with a beam 
waist of the Gaussian beam mm10 =ω . 

In the coming section, using the Collins-Huygens 
integral formalism for diffraction, we discuss the 
propagation of a LFTG beam through an SPP followed by 
an ABCD optical system and two analytical expressions of 
a novel kind of beams, one for the integer topological 
charge and the other for the fractional case, are performed. 
The novel beam generated is referred as SK beams. 

 
3. ABCD-treatment of the LFTG beams:     
Generation of SK beams 
Let us consider that the SPP which located in z’ is 

illuminated with a LFTG beam which described by Eq. (1) 
(see Fig. 2). Assuming that the beam hits exactly at the 
center of the SPP, the field distribution behind this optical 
system is given by  
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where χ is the topological charge which can be integer or 
fractional. According to Collins-Huygens integral, which 
allows one to calculate the field distribution of the 
emerging light from an initial plane z’ to any desired plane 

z, the out-put field distribution after propagation through 
any optical system described by an ABCD transfer matrix 
can be established as [26] 
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Fig.  1. Intensity of incident LFTG beams for different beam order M with mm10 =ω . 
 
 

 
 

Fig. 2. Schematic LFTG beam passing through an SPP followed  
by an ABCD optical system for producing the SK beams. 

 
 

Substituting Eq. (7) into Eq. (8), one obtains  
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In the following, we will evaluate Eq. (9) for an 

integer and a fractional topological charge. 
 

3.1. Generated SK beams for an integer topological  
       charge 
 
In this case, we set that χ=l when l is an integer, and 

with the help of the following integrals [27] 
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and after some developments, Eq. (9) can be further 
simplified as 
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If we set that  
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and by using the following integral [28],  
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the final analytical expression of the converted beam by an 
SPP has the from 

( ) ( ) ( )( )
( )

( )
( )

( ) .
4

;1;1
2

0

1

1
2

2
,,

22

11
1

2
1

'

2
1

0

'

2
'

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

γ
ρ

−++γ
ω

ω
α×

+Γ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+Γ

ρ⎟
⎠
⎞

⎜
⎝
⎛

λ

−π
=ϕρ

−−Φ

=

ρϕ+−
+

∑ B
kl

l
Fe

z

l

l

B
kee

B

iAzE

m

l

m
zi

M

m m

m
m

l
l

B
kDilzzki

l

l

m

                                       (14) 

 
where ( ).Γ  is the gamma function and 11 F (a;b;x) is the 
confluent hypergeometric (Kummer) function. That can 
allows referring SK beams produced with the help of an 
SPP illuminated by a LFTG beams. 
 Our main result established in Eq. (14) can be 
considered as a generalization of the above studies 
concerning the generated doughnut beams by an SPP 
illuminated by Gaussian ones [25] and concerning  the 
passage of LFTG and Gaussian beams through an ABCD 
optical system without SPP. 
 

3. 2. Generation of SK beams by using a fractional  
        topological charge χ 
 
The subject of this section is to see what happens if the 

SPP is illuminated with a LFTG beam with a 
wavelength λλχ ≠ . When one illuminates the SPP with a 

wavelength χλ , the SPP introduces a topological charge χ 
to the beam not equal to 1 but is a fractional quantity. This 
topological charge χ can be calculated from the 
equation ( ) χλ∆=χ hn. , where h is the step height. ∆n 

denotes the difference of refractive index between the SPP 
and its surrounding. λχ is the wavelength of the incident 
beam. 

When the topological charge χ  is not an integer 
(fractional),  the integration over the azimuthal angle in Eq. 
(8)  is not taken by applying directly the well known closed 
form integral established in Eq. (10). However, in this case 
the phase factor ( )'exp χϕi  can be expressed as a Fourier 
series as [29] 
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 According to Collins-Huygens integral, which allows 

one to calculate the field distribution of the emerging light 
from an initial plane z’ to any desired plane z, the out-put 
field distribution after propagation through an optical 
system described by an ABCD matrix can be established as 
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Taking in account the  parameter mγ , given by Eq. (12) 
and by using the well known integrals of Eqs. (10) and 
(13) and recalling the next relationship  
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and after some calculations, the final analytical expression 
of the converted beam by an SPP has the from 
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In the coming sub-paragraph, from our generalized 

analytical expression of production of SK beams in case of 
integer topological charge l, established in Eq. (14), and 
under some conditions on parameters M and l, some above 
studies concerning the formation of Kummer beams by an 
SPP, about the propagation of LFTG and Gaussian beams 
through an ABCD optical system without SPP, are 
discussed as particular cases. We will also derive the 

propagation of the SK beams through an ABCD optical 
system for the small ρ  and moderates B. 

 
3. 3. Special cases  
 
Case 1  
 
 If we set that M=1, Eq. (1) reduces to 
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Eq. (19a) characterizes the analytical expression of the 

normalized fundamental Gaussian beam. In this condition, 
Eq. (14) becomes  
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This is the output optical field distribution of Kummer 

beams passing through an ABCD paraxial optical system 
for any integer topological charge l. This is a doughnut 
beam generated from a fundamental Gaussian beam 

converted by an SPP. The beam profile can be calculated at 
any position z. In that case if l=1, and after tedious 
calculations it’s easy to show that 
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This last equation is the same of the main result of 

Ref. [25] concerning the generation of Kummer beam by 
an SPP illuminated by a Gaussian beam. 

Then, our main result can be considered as a 
generalization of study in Ref. [25]. 

Case 2 
 If χ=l=0, Eq. (14) reduces to 
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This equation describes the propagation of LFTG 

beams through an ABCD optical system without SPP 
system. The output field distribution in this case is a non-
doughnut beam. 

Case 3 
Where M=1 and χ=l=0, Eq. (14) reduces to 
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This equation describes the receiver field at a plane 

located at position z. It was the output fundamental 
Gaussian beam travelling through a paraxial ABCD optical 
system without an SPP system. 

Case 4 
Near optical axis at small ρ and moderates B 

(ρ/B<<1), Eq. (14) reduces to 
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This last equation confirms explicitly that the formed 

beams are hollow ones with a dark central intensity. 
 
 
4. Numerical simulations  
 
In this section, we are interested in analyzing the 

propagation of SK beam using Eqs. (14) and (17) for two 
particular cases: free space and Fractional Fourier 
Transform (FRFT) system in the case of integer 
topological charge χ=l, respectively. We will also study 
the propagation through the SPP followed by a free space 
with a fractional topological charge.  

 
4. 1. Propagation in free space 
 
As first example, we consider the propagation through 

a free space for which the transfer matrix coefficients are: 
A=1, B=z-z’, C=0 and D=1. By using Eq. (13) and taking 
into account the above transfer coefficients and the 
following parameters: ω0=1mm, mµ=λ 84948.0 , l=1 and 
z’=1400mm, we present in Fig. 3, the intensity of 
superposition of Kummer beams travelling in a free space. 
This figure presents the evolution of three dimensional 

intensity distributions of SK beams versus r propagating in 
a free space for fixed LFTG order beam M and for 
different propagation distances z. From the plots of this 
figure, we remark that the maximum intensity of the 
generated doughnut beam decreases gradually with the 
propagation distance. Also, we note that, for a fixed M, as 
long as the propagation distance decreases as much as the 
intensity of generated beam increases and the radius of 
dark region of the doughnut beam become finer and the 
intensity reaches zero quickly. This explains that the 
profile of the intensity of generated beam becomes very 
fine with the decreasing of propagation distance z. Note 
that the radius of the dark region becomes small. As far as 
z increases away from the SPP as far as the maximum 
intensity profile decreases. Also, we remark that the spot 
size expands and the radius of the centre dark region 
becomes important because of the phenomenon of 
diffraction. 

Fig. 4 presents the intensity distribution in 3D of the 
SK beam at propagation distance z=1850 mm and for the 
fixed parameters cited above (z’, ω0) for different beam 
orders M. The plots show that the maximum of intensity 
increases slightly by increasing the order M. 
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              z= 1450 mm                  z= 1550 mm      z= 1650 mm 
 

  
z= 1850 mm                            z= 2450 mm 

 

  
z= 2650 mm                                   z= 3050 mm 

 
Fig.  3:, Evolution of the intensity distribution of SK beams after passing through a free space, for topological 

charge l=1,  ω0=1 mm, z’=1400 mm, M=40, λ=0.849 µm and for different propagation distances z. 
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                           M=1         M=5                    M=10     

    
     M=20           M=40 

 
Fig.  4: Evolution of the intensity distribution of SK beams travelling a free space  

with topological charge l=1, ω0=1 mm, z’=1400 mm and z=1850 mm for different beam orders M. 
 
 

4.2 Propagation through a FRFT system 
 
The FRFT case is regarded as a generalization of the 

conventional Fourier transform. It was defined in 
mathematics by Namias [30], and introduced in optics by 
Mendlovic and Ozaktas [31, 32]. There are at least two 
ways to implement optically the FRFT: the first is based on 
the use of the graded index medium and the second uses 
the combinations of lenses and space [33]. The ABCD 
matrix associated with the FRFT p-order is given by  
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⎜
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φφ−

φφ
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⎠

⎞
⎜⎜
⎝

⎛
cossin1

sincos

s

s

f

f

DC
BA

,                (25.a) 

 
with 

2/π=φ p ,                                            (25.b) 
 

and fs is the standard focal length. 

By inserting the coefficients of the matrix given by 
Eqs. (25) into Eq. (14) one can obtain the intensity 
distributions of SK beams through a FRFT system for 
different fractional order p. The intensity distributions of 
SK beam travelling different FRFT planes with various 
fractional orders p are depicted in Fig. 5. From the 
illustrations of this figure, it’s provided that the intensity 
distribution keeps the same profile whatever the FRFT 
order p. From p=0.1 to 0.9 with increasing of FRFT order 
p, the radius of the centre dark region decreases and the 
maximum of intensity distributions increases, thus enough 
to p=0.9. Then, in this interval the doughnut outgoing 
beam becomes quite fine and intense with increased p. In 
the followed interval (from p=0.9 to 1.8), the maximum of 
intensity distribution of the output beam decreases and 
radii of dark region increases respectively with increasing 
of the FRFT p-order. Like to the first interval, in the third 
one (from 1.8 to 2.9), more the parameter p increases the 
intensity maximum increases, and the beam propagates in 
space following r also increases. 
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                       p=0.1                                             p=0. 3 

  
p=0.5                                      p=0.7 

 

   
 
            p=0.9                                      p=1                 p=1.1 
 

   
        p=1.2           p=1.4              p=1.6 
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                                   p=1.8                             p=2.2           p=2.4 

 
              p=2.8                      p=2.9 
 
 

Fig. 5: Evolution of the intensity distribution of SK beams after propagation  
through a FRFT system for: l=1, ω0=1 mm, z’=1400 mm, fs=500 mm,  

and M=40 for different FRFT orders p. 
 

 
4. 3. Propagation through an SPP with fractional  
         topological charge 
 
The aim of this paragraph focuses on the study of the 

response of the SPP when it's illuminated by a LFTG beam 
of wavelength nm9.849=λ≠λ χ  (where λ is the 
wavelength corresponding to an integer topological charge 
l=1). In this condition, if the SPP lighted up by a LFTG 
beam of )9.849( nm=≠ λλλχ , it introduces a fractional 
topological charge χ.  The wavelengths and their 
corresponding topological charges used in the numerical 
simulations of this subsection are listed in the following 
Table 1. 
 
 

 

Table 1. Fractional topological charges used by the SPP when 
illuminated with a beam of wavelength ( )nm9.849=λ≠λχ . 

 
 

χλ (nm) 
 

867.24
 

858.48
 

849.9 
 

841.48
 

833.23
χ 0.98 0.99 1 1.01 1.02 

 
 The calculated intensity distributions for SK beams 
generated with different fractional topological charges χ 
are shown in Fig. 6 using the analytical expression of Eq. 
(18). The plots of this figure illustrate that the intensity 
maxima decreases with the increasing of χ. For showing 
the intensity oscillations in the case of 1≠χ , we give in 
this figure a zoom in the region [0,2mm].
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Fig. 6. Evolution of the intensity distribution of SK beams  

for different fractional topological charges χ (=0.98; 0.99; 1; 1.01; 1.02). 
 
 

5. Summaries 
 
We have suggested and demonstrated a novel 

analytical expression of superposition of Kummer beams 
as new doughnut beams generated by an SPP of integer 
and fractional topological charges which converts the 
phase of Li’s flattened Gaussian beams. In the case of an 
integer topological charge of SPP, the generation of 
Kummer beams by an SPP system illuminated by 
fundamental Gaussian beams and the propagation of the 
LFTG and Gaussian beams travelling a paraxial ABCD 
optical system without SPP are deduced as special cases 
of our generalized study. Numerical calculations are 
performed to illustrate the paraxial propagation of these 
beams through free space (in the both cases: integer and 
fractional topological charges) and through a fractional 
Fourier transform system (in the case of integer one 
(l=1)).  
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